

Data availability for landscape level REL: Reflections

Peter A Minang World Agroforestry Centre (ICRAF) & ASB Partnership For the Tropical Forest Margins

World Bank, Washington DC, January 26 2015

What Data?

- Measurements of biocarbon stocks are a function of area (of each land use category) and carbon density (amount of carbon per unit area).
- Estimates of change (monitoring) are repeated measurements to assess changes within and between landuse and land cover categories

Key tasks for carbon accounting

Five key tasks for carbon accounting in reference regions, project regions, and leakage regions include:

- Determination of monitoring areas.
- Determination of reference emissions (including non-CO₂ emissions from fires) – baseline.
- Determination of deforestation areas.
- Determination of carbon stocks.
- Determination of non-CO₂ emissions from fires.

Accounting for C stocks from land use sectors

 ΔC = annual change in C stocks in the landscape, ton C yr⁻¹

Aij = area of land use type *i* that change to *j*, ha

 $\Delta Cij LB = change in C stocks in living part (biomass) from changes of land use type$ *i*to*j*, tonnes C ha-1

\DeltaCij DOM = change in C stocks in **dead part (organic matter)** from changes of land use type *i* to *j*, ton C ha⁻¹

\DeltaCij SOILS = change in C stocks in **soils** from changes of land use type *i* to *j*, ton C ha⁻¹

Tij = time period of the transition from land use type *i* to land use type *j*, yr.

Accounting for C stocks from land use sectors

$$\Delta C = \sum_{ij} \left[\Delta C_{ij \ LB} + \Delta C_{ij \ DOM} + \Delta C_{ij \ SOILS} \right] / T_{ij}$$

Remote Sensing Data Image interpretation Land use change quantification

What data is available in Cameroon?

Mitig Adapt Strat Glob Change (2008) 13:157–178 DOI 10.1007/s11027-007-9084-7

ORIGINAL PAPER

A data support infrastructure for Clean Development Mechanism forestry implementation: an inventory perspective from Cameroon

Peter A. Minang · Michael K. McCall · Margaret M. Skutsch · Jeroen J. Verplanke

Data Type	Paper data	Digital data	Department/Agency involved	Ministry of
Criteria for determining poor communities	N	N	-	-
Indicators for Impact assessment	N	N	-	-
Indicators for Sustainable Development	Y	Y	"Comite Natonal MDP Cameroun"	Environment and Nature Protection (MINEP)
Allometric equations for tree species	Р	Р	Agence National d' Appui au Developpement Forestier (ANAFOR), World Agroforestry Centre (ICRAF)	Forests and Fauna (MINFOF)
Soil bulk density index by region	N	N		-
Carbon accumulation factors	Y	Y	Institut de Recherche pour L'Agriculture et le Developpe ment—(IRAD), ICRAF	Scientific Research (MIN RESI)
Remote sensing data	Y	Y	Centre de Télédétection et de Cartographie Forestière (CETELCAF), Institut Nationale de Cartographie (INC), Global Forest Watch (GFW)	MINFOF (Centre de Savoir); MINRESI
Forest Cover and Land use	Р	Р	CETELCAF, GFW	-
Deforestation data Afforestation	PN	P	ANAFOR	-
Every construct	**	**		

Table 2 CDM Meso and Macro (National) level information availability

Summary for Cameroon

- Data Scarce environment
- Fractured and unsystematic data
- GIS and RS data has improved tremendously since 2008however, clouds, saturation remains problem, technical capacity, cost f high resolution data etc
- Soils data a little more available from AFSIS project (ICRAF)
- Defining the boundary what is the appropriate way of delimiting the area referred to as a landscape?
 - Issues of cross-jurisdictional forest resources (Abardare Ranges of Kenya which cuts across many counties in Kenya)
 - Each jurisdiction could also have its own approaches to activities in the landscape which may influence the REL. (e.g. in Kenya counties are semi-autonomous and make decisions on their own). Historical contexts also vary including resource governance protocols.
 - Should we say landscapes should be delimited along jurisdictional boundaries, ecological boundaries may defer widely which again is crucial in determining the REL.

REALU in Efoulan Municipality, Cameroon

EFOULAN

Area: 150000 Population: 25000 Livelihood: agrarian with cocoa being the main agricultural product Forest area: 5600 ha Drivers of deforestation: Shifting cultivation for creating land for cocoa and other annual crops

www.worldagroforestry.org

LUWES and REALU

 Within the SECURED Landscapes Project implemented by ICRAF, we assessed changes in C stock using the LUWES (Land Use Planning for Low Emission Development Strategy) tool.

Basic steps in LUWES

- 1. Identify **planning units** using multi-stakeholder discussions, spatial analysis, etc.
- 2. Historical land use change and their implications for carbon storage
- **3. Baseline Scenario** development of LULC change and estimation of Reference Levels of Emissions
- 4. Scenarios of emission reduction and projected emissions using projected land use/cover
- 5. Trade-off analysis- scenario selection by examining the opportunity cost vs the reduced emissions in a negotiated process.
- 6. Formulation of **action plans** to implement the selected options e.g. incentives, enabling conditions, etc.

Source: Dewi et al (2011)

Efoulan Municipality, Cameroon

Carbon stocks in different land uses

Efoulan municipality land use/ cover dynamics

Land use type	Time average carbon stock	Spatial coverage (ha)		Relative change	Net impact of land use change on
	(t C/ha)	2001	2007	(ha/yr)	carbon stock (t)
Mixed crop field	87	1198	1512	44.86	27318
Crop field created by clearing primary forest	225	599	830	33.00	51975
Cocoa farms	156	4755	5771	145.14	158496
Oil palm plantation	136	268	338	10.00	9520
Young/bush fallow lands	142.5	2031	2199	24.00	23940
Logged forest	267	8126	7683	-63.29	-118281
Undisturbed forest	311	64136	62780	-193.71	-421716

Source: Yemefack et al (2013)

www.worldagroforestry.org

Possible land-based development pathways in the landscape

Planning Units	Scenario 1: Business as Usual (BAU)	Scenario 2: Cacao extension	Scenario 3: Sustainable Forest management	Scenario 4: Mix of sustainable forest management and properly managed Cacao extension
Community Forest	No measures are taken to reduce emission	2000 ha of this unit converted into cacao plantation	Illegal exploitation avoided and forests managed well	2000 ha community forest converted to cacao farm with applicable intensification pathways
Communal Forest	Same as above	1000 ha of this unit converted into cacao plantation	Illegal exploitation avoided and forests managed well	1000 ha are converted into cacao plantation with applicable intensification pathways
Concessions of Forest Production	Same as above	Only selective logging and no total conversion takes place here.	Illegal exploitation avoided and forests managed well	Limited areas of concession forests converted into cacao plantation with applicable intensification pathways
Shifting Cultivation landscape	The expansion of shifting cultivation continues.	2000 ha converted into cacao plantation	The cleared land is used property without causing further damage	2000 ha converted into cacao plantation with applicable intensification pathways

Emission Scenarios

Figure 3. Greenhouse gases emission potentials (CO2e) from the various development scenarios simulated over 30 years period

www.worldagroforestry.org

Emissions Estimates

Estimated cumulative emissions in three decades under various development pathways in Efoulan Municipality, Cameroon

www.worldagroforestry.org

Sources of uncertainties

- **Technical**: **Data** (satellite imageries) quality and resolution, pre-**processing** error (georeferencing, atmospheric correction), interpretation error (inconsistency, semantic extraction, information recognition), classification method, extrapolation
- Operational: lack of budget for ground truthing, monitoring, purchasing data with proper resolution & powerful software, lack of time & capacity, lack of coordination ...
- **Political**: definition of forest, scope of REDD, gaps between expectation and reality, ...

What Legend?

- Classification of land uses and or activities remains a huge problem within and across landscapes?
- Multiple maps, multiple legends for different agents and data sources?
- Ministries have different land classifications?
- Can a one-map project help?
- Cascaded, hierarchical claissification?

Undisturbed forest	
Log over forest-high density	 - I
Log over forest-low density	
Undisturbed mangrove —	
Log over mangrove	
Undisturbed swampt forest	
Log over swampt forest	
Agroforest	
Rubber agroforest	
Rubber	
Plantation	
Small scale oilpalm	
Large scale oilpalm	
Natural regrowth-shrub	
Agriculture	
Ricefield	
Grass	
Settlement	
Open peat	
Cleared land www.worldagroforestry.org	

Information resolution

- **3 levels of forest classification**: general (I), ecozone specific (II), and management (III), are combined with:
- **2 sublevels of non-forest classification**: woody (tree) vs non-woody (non-tree) vegetation differentiation (A) and type of woody vegetation (B)
- Subsets of the combination explored: I, II, IIA, III, IIIA, IIIB

One Approach to MRV

Forest transition

Information Resolution: Summary

- In early FT, when forest degradation is more marked than forest conversion, discriminating forest based on types, quality and management are inevitable in assessing C-stock changes at landscape level
- In the intermediate FT, when forest conversion and plantation development take place, discriminating between tree-based systems with other non-forest areas is important
- In the advanced FT, when agricultural intensification is active and there are conversion from one tree-based systems to others and also to croplands and others, differentiating vegetation type within the tree-based systems leads to a noticeable difference

Temporal resolution: Summary

- Reference period matters when setting reference level
- In the most advanced stage of FT, having more frequent assessment does not really make a difference since annual emission has been stabilized
- In the intermediate stage of FT, where annual emissions have declined from period 1 to period 2, rate of declines matters in setting up how much further declines of annual emissions are eligible for compensation compared to BAU rate of decline, otherwise the reduction of emission in the future will be overestimated
- In the early stage of FT, annual emissions have increased from period 1 to period 2; in setting reference line one has to consider the reduction of rate of increase from BAU rate for compensation, otherwise the emission reduction will be underestimated

Data choice

- Guided by Key source analysis
- Decision trees in GPG 2000 and 2003
 - Tier 1 are simple methods with default values
 - Tier 2 are similar but with country specific emission factors and other data
 - Tier 3 are more complex approaches, possibly models.
 However should be compatible with lower tiers.

Accuracy vs Precision (FOR WHOM?)

THANK YOU- MERCI – GRACIAS

DR LALISA DUGUMA (ICRAF) DR SONYA DEWI (ICRAF) DR MARTIN YEMEFACK (IITA –IRAD) DR VAN NOORDWIJK (ICRAF)

Partnership for the Tropical Forest Margins

www.worldagroforestry.org