REMOTE SENSING APPROACHES FOR MONITORING OF EMISSIONS FROM LAND COVER CHANGE

Alessandro Baccini

BioCarbon Fund Initiative for Sustainable Forest Landscapes Landscape-level carbon accounting Washington DC, January 26-27, 2016

Contact: A. Baccini abaccini@whrc.org

Monitoring of emissions :

 Aboveground carbon pool monitoring
 Remote Sensing/IPCC approaches
 "Direct" measurements of carbon density changes (Deforestation, Degradation, Gain)

Trees Outside Forest

Changes in Soil Carbon

IPCC guidelines

Biomass

(tC/ha)

Deforestation

(tC/ha)

CO₂ Emissions 1990/2000

Reduce uncertainty in carbon cycle studies

Input for REDD/carbon Market

Stock Flow Approach

Large Area Carbon Estimation

Forest Inventories

Stratify & Multiply (SM) Approach

Assign an average biomass value to land cover/vegetation type map (Asner et Al. 2010)

Combine & Assign (CA) Approach

 Extension of SM, GIS and multi-layers information (Gibbs et al. 2007, Tyukavina et al. 2015)

Ecological Models (EM) Approach

Remote sensing to parameterize the model (Hurtt et al. 2004)

Direct Remote Sensing (DR) Approach

Empirical Models where RS data is calibrated to field estimates (Baccini et al. 2004, 2008, 2012, Saatchi et al. 2007, 2011, Blackard et al. 2008)

class variability)

required in each class

Vegetation Map - 10 Strata

Baccini and Friedl 2007, Asner et al. 2010

Satellite Information

Two types of information: Point data and Image data

ICESat GLAS (Points)

Field observation network & calibration

>300 locations > 30,000 trees measured

- Columbia
- Ecuador
- Bolivia
- Brazil

- Gabon
- DRC
- Uganda
- Tanzania

- Vietnam
- Cambodia
- Indonesia

Pantropical Forest Carbon Mapped with Satellite and Field Observations

Baccini et al. 2012

Amazon Basin detail from the map

DRC detail from the map

Error 19 Mg C ha⁻¹ google.org

PNG detail from the map

Error 24 Mg C ha⁻¹

Error 25 Mg C ha⁻¹

Recent work

Landsat circa year 2000 RGB: 4,5,7 (Hansen et al. 2013)

GLAS based biomass density estimates (Baccini et al. 2012)

Based on similar approach of Baccini et al. 2012

Improvement in Spatial Resolution

500m resolution

Aboveground Carbon

Landsat Based Biomass Density (Yr. 2000)

Landsat Annual Biomass Loss from Deforestation

Landsat biomass density circa 2000 combined with Hansen et al. 2013 deforestation

Annual Gross Emissions from Deforestation

Zarin et al. 2015

No need to define Deforestation and Degradation

Carbon density trajectories over time and space

- Time series approach based on "change point" analysis
- For each 500 m x 500 m pixel we identify the trajectory of carbon density

Pixel 3762098

Pixel 1800164

Continuous spatially explicit carbon density change with measurable uncertainty

190 km x 215 km

Consistent with deforestation and sensitive to "degradation" ?

Deforestation Landsat based (30 m resolution) Hansen et al. 2014

Mg/ha High : 128 250 Biomass (Mg/ha) Gain 150 Gain = 59.2Low : 1 StdEr = 24.250 P-V = 0.0410 12 2 10 8 Mg/ha Year Loss = -201.2High : -1 250 StdEr =8.4 Biomass (Mg/ha) P-V = 0.003Loss 150 Low : -252 50 0 12 2 10 8 Year Mg/ha 250 Biomass (Mg/ha) High : 293 150 Stable StdEr = 46.150 P-V = 0.99Low : 0 0

2

10

8

12

190 km x 215 km

South East Asia Biomass change 2002 - 2012

+ + - +

0 70 140 Kilometers

South East Asia Biomass change 2002 - 2012

0 70 140 Kilometers

Deforestation Landsat based (30 m resolution) Hansen et al. 2014

Uncertainty Associated to Change

Democ. Rep. Congo Annual Carbon Net Loss and Gain

Baccini et al. 2016. In review Nature

Trees Outside Forest

Trees that do not meet the criteria of "Forest"
 It depends on Forest definition/country/agency

Monitoring requires high resolution RS

Planet Lab data 3-5 m resolution

SUMMARY

- "Direct" approach to quantify changes in carbon density over time and space
- Based on multiple annual observations, improvement over the T1 – T2 approach
- Globally consistent, continuous, no need to classify forest and land cover change
- Fewer inputs resulting in smaller uncertainty
- Preliminary results are encouraging, what about attribution?

Summary

- Errors from allometry are relatively small
- Spatial aggregation reduce uncertainty in the estimates
- Different vegetation types tent do show different errors
- Biomass density maps can help in region with few field data
- There is the need for better remote sensing data
 Airborne LiDAR significantly improve the estimates (Baccini & Asner, 2014)